Human lateral geniculate nucleus and visual cortex respond to screen flicker.

نویسندگان

  • Pierre Krolak-Salmon
  • Marie-Anne Hénaff
  • Catherine Tallon-Baudry
  • Blaise Yvert
  • Marc Guénot
  • Alain Vighetto
  • François Mauguière
  • Olivier Bertrand
چکیده

The first electrophysiological study of the human lateral geniculate nucleus (LGN), optic radiation, striate, and extrastriate visual areas is presented in the context of presurgical evaluation of three epileptic patients (Patients 1, 2, and 3). Visual-evoked potentials to pattern reversal and face presentation were recorded with depth intracranial electrodes implanted stereotactically. For Patient 1, electrode anatomical registration, structural magnetic resonance imaging, and electrophysiological responses confirmed the location of two contacts in the geniculate body and one in the optic radiation. The first responses peaked approximately 40 milliseconds in the LGN in Patient 1 and 60 milliseconds in the V1/V2 complex in Patients 2 and 3. Moreover, steady state visual-evoked potentials evoked by the unperceived but commonly experienced video-screen flicker were recorded in the LGN, optic radiation, and V1/V2 visual areas. This study provides topographic and temporal propagation characteristics of steady state visual-evoked potentials along human visual pathways. We discuss the possible relationship between the oscillating signal recorded in subcortical and cortical areas and the electroencephalogram abnormalities observed in patients suffering from photosensitive epilepsy, particularly video-game epilepsy. The consequences of high temporal frequency visual stimuli delivered by ubiquitous video screens on epilepsy, headaches, and eyestrain must be considered.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Flicker responses in monkey lateral geniculate nucleus and human perception of flicker.

An analysis was made of the impulse discharge patterns-evoked by sinusoidal luminance modulation-of single cells in the lateral geniculate nucleus of the macaque monkey. The goal was to determine whether a correspondence could be observed between flicker detection by human subjects in psychophysical experiments and electrophysiological measurements of discharge patterns of single cells of the l...

متن کامل

Connections of auditory and visual cortex in the prairie vole (Microtus ochrogaster): evidence for multisensory processing in primary sensory areas.

In prairie voles, primary sensory areas are dominated by neurons that respond to one sensory modality, but some neurons also respond to stimulation of other modalities. To reveal the anatomical substrate for these multimodal responses, we examined the connections of the primary auditory area + the anterior auditory field (A1 + AAF), the temporal anterior area (TA), and the primary visual area (...

متن کامل

Histological and Biochemical Alterations in the Superior Colliculus and Lateral Geniculate Nucleus of Juvenile Rats Following Prenatal Exposure to Marijuana Smoke

Prenatal exposure to marijuana has been associated with a variety of brain deficits, as Δ9-tetrahydrocannabinol (THC), its main active ingredient crosses the placenta and affects foetal brain development. Despite this effect, marijuana remains a commonly abused substance among pregnant women. In the current study, we examined the histological and biochemical changes in the superior colliculus (...

متن کامل

Functional imaging of the human lateral geniculate nucleus and pulvinar.

In the human brain, little is known about the functional anatomy and response properties of subcortical nuclei containing visual maps such as the lateral geniculate nucleus (LGN) and the pulvinar. Using functional magnetic resonance imaging (fMRI) at 3 tesla (T), collective responses of neural populations in the LGN were measured as a function of stimulus contrast and flicker reversal rate and ...

متن کامل

A Dissociation Between Brain Activity and Perception: Chromatically Opponent Cortical Neurons Signal Chromatic Flicker that is not Perceived

When two isoluminant colors alternate at frequencies > 10 Hz, we perceive only one fused color with a minimal sensation of brightness flicker. In spite of the perception of color fusion, color opponent (CO) cells at early stages of the visual pathway are known to respond to chromatic flicker at frequencies far exceeding the perceptual fusion frequency. To explain color fusion, several groups ha...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Annals of neurology

دوره 53 1  شماره 

صفحات  -

تاریخ انتشار 2003